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R E G U L A R  A N D  A N O M A L O U S  R E G I M E S  

OF G A S - L I Q U I D  F L O W  

T H R O U G H  A C H A N N E L  C O N T R A C T I O N  

V. Yu. Liapidevskii UDC 532.529; 533.6.2 

1. I n t r o d u c t i o n .  The problem of the adequate choice of boundary conditions is very real in the 
modeling of multiphase flows in a channel of finite length. The condition that flow be critical in the 
neighborhood of the minimum section of the channel is widely used in one-dimensional hyperbolic flow 
models It allows us to describe the upstream influence of a local contraction. This approach, originating in 
the hydraulics of open channel flows, is also well-known in gas dynamics and is used in modeling of transonic 
nozzle flows in a channel approximation. An obstacle has control over the upstream flow if it provides a 
transition from subcritical (subsonic) to supercritical (supersonic) flow. In a channel of variable cross-section, 
such a regular flow regime holds for one-dimensional flows of shallow water and normal gas. But in the case 
of more complicated models of a multiphase or multicomponent fluid, anomalous flow regimes can arise for 
which an obstacle "supports" the propagation of upstream disturbances of finite amplitude and, at the same 
time, the flow through the channel contraction is totally supercritical. For two-layer shallow water flow above 
an uneven bottom, such anomalous regimes were experimentally found in [1, 2] and investigated in [3]. 

The aim of this work is to investigate theoretically, in the framework of the channel approximation, the 
nonsteady wave motion of a barotropic compressible fluid with a nonconvex equation of state in a neighborhood 
of local contraction of the channel. For large times, the problem is reduced to a self-similar one and can be 
divided into two stages, each of which has been well-studied to date: the wave structure for the problem of 
discontinuity decay and the structure of steady flows in a channel of variable cross-section for gases with a 
nonconvex equation of a state. The first problem has been studied in [4-7]. Considerable study has recently 
been given to steady flows of dense gases through a Laval nozzle [8-10] in connection with possible applications 
in engineering problems. 

The author does not pose the problem of complete classification of possible flow regimes generated 
by a sudden contraction of a channel. Most of the attention has been concentrated on the detection and 
explanation (based on the analysis of the nonstationary problem) of the causes of anomalous flow regimes in 
the neighborhood of an obstacle. 

2. T h e  E q u a t i o n  of  S t a t e  of a G a s - L i q u i d  M i x t u r e .  One of the simplest models of a gas-liquid 
medium is a one-velocity one-pressure model of joint motion of the gas and incompressible liquid component. 
One-dimensional motions are governed by the following system of equations: 

pt + (pu)  = 0, (pu)t  + (o 2 = 0. (2.1) 

Here p is the density, u is the medium velocity, and the equation of state p = g(~-) (r = l/p) is found from 
equality of the pressures in the liquid and gas components. If the void concentration is small, then the liquid can 
be considered to be a thermostat  and the process of void-concentration variation to be isothermal: p = f (V,  T) 
(T - const, V is the specific gas volume). Thus, for the inert gas component (the mass concentration ~ - 
const), the effective equation of state p = g(T) = f(V,  T) is completely specified by the compressibility of the 
gas phase, since the specific liquid volume ~- = AV + (1 - A)~'l. Moreover, on changing to the Lagrange mass 
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coordinate v I = const and scaling the variables q and q ~ )~-Xq, system (2.1) is reduced to the equations of 
isothermal gas motion 

Vt - uq = O, ut - pq = 0  (2.2) 

with the equation of state p = Af (V ,  T) .  Hence, the parameter A is insignificant in this model, and further 
analysis can be performed for A = 1, i.e., for gas dynamics equations (2.1). In this case, the incompressible 
component is used only to substantiate that the motion under consideration is isothermal. 

If the temperature T is close to the critical temperature To, anomalous thermodynamics properties 
appear in the medium. The gas behavior near the critical point can be determined by the reduced van der 
Wazls equation [9] 

9 
- _ ( 2 . 3 )  
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with quantities put into dimensionless form via the corresponding critical values: t5 = p/pc,  T = T/Tc ,  

V = V/Vc. In what follows the bar above a dimensionless variable is omitted. 
For T > 1 dependence(2.3) is monotonic (T = 1.1 in Fig. 1), but for values of T close enough to unity 

(1 < T < T.,  T.  ~- 1.07), the second derivative f ~ v  becomes positive in the neighborhood of the point V = I. 
Figure 1 shows the dependence p = f(V, T) for T = 1.01. For T < 1 the dependence of the pressure on the 
specific volume V is already nonmonotonic (T = 0.9 in Fig. 1), and stable states of the medium are realized 
in two intervals (where f{z < 0) corresponding to the liquid and gas phase. 

In this article we restrict our attention to the case of T > 1 without phase transitions. The analysis 
given below is in fact applicable to a wider class of isothermal (barotropic) media with a nonconvex monotone 
(but not necessarily strictly monotone) equation of state. Therefore, the Maxwell rule also allows us to describe 
the wave structure in the neighborhood of a channel contraction for T < 1 (Fig. 1, T = 0.9). 

3. T h e  Se l f -S imi la r  So lu t i ons  of  S y s t e m  (2.1).  Let us consider the problem of a sudden local 
contraction of a channel in which an incompressible liquid flows at a constant velocity. It is rather difficult to 
investigate completely the nonsteady wave picture in a channel of variable cross-section even in the case of one- 
dimensional model (2.1). But for large times (or small obstacle sizes) the solutions of system (2.1) behave as 
self-similar ones. In this case a flow regime is attained in the channel contraction which is close to steady. Thus, 
the structure of nonsteady longwave disturbances generated by a local obstacle can be completely inferred 
from an analysis of self-similar solutions of the following generalized problem of arbitrary discontinuity decay. 
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Let the piecewise constant initial data be specified for t = 0 in a channel of constant cross-section A0. 

{ �9 < o, 
( p ( O , x ) , u ( O , x ) )  = ( p l , t t l )  , X > 0. (3.1) 

A local channel contraction of minimum cross section x = 0 is located at the point Am < A0. We search for 
a solution in the class of self-similar solutions that depend only on the variable ~ = x/ t  and contain a finite 
number of discontinuity lines. The Hugoniot conditions 

r ip]  = [pu], D[pu] = [pu2 + p] (3.2) 

and the Oleinik stability conditions [11] are fulfilled on the discontinuity lines x = Z)t. Here [h] = h(t, x + 
O) - h(t, x - 0) is the jump on a discontinuity line. If for t > 0 the states to the left and to the right of an 
obstacle coincide, then the Cauchy problem (2.1), (3.1) is a classical problem on arbitrary discontinuity decay. 
Its solution is given in [4-7] for nonconvex equations of state. The structure of the wave adiabat, i.e., the set 
of admissible states (p, u) that  can be connected to a given state (ill ,  Ul) by a number of simple centered and 
stable shock waves of the same family, can be completely specified on the plane (V, p). 

Let us consider the process of constructing the wave adiabat for a nonconvex equation of state (2.3) 
(1 < T < T.) in more detail. Let 1/. and V* be points of inflection of the function p = f (V) ,  1/. < V* (Fig. 
1), and V1 > V*. For V* < V < 1/1 the function f (V)  is convex and the states (V , f (Y) )  and (V1,pl) are 
connected by a stable shock transition. If V < V* but the entire graph of the function p = f(z)  for V < z < V1 
lies under a straight line L1 passing through points (V, f (Y) )  and (VI,pl), then the dependence D = D(V) 
is monotonic in this interval, and the Oleinik stability condition is fulfilled. Thus, for waves propagating to 

the right, the discontinuity velocity D = Ul + Vlx/(f(V) - pl)/(V1 - V) is a decreasing function of V. At the 
point V2, where the straight line L1 is tangential (Fig. 1), the velocity Z)(V) attains the local maximum DE, 
and as V decreases further, the centered compression wave, for which the Riemann invariant s = u - or(p), 
where (z'(p) = c/p, c 2 = p'(p), is constant, adjoins the shock wave of maximum amplitude. 

For V < V. the centered compression wave is followed by a shock transition from (V3, f(V3)) to the 
final state (V, f (V)) .  The point V3 is found on the condition that the straight line L2 is tangential to the 
graph of the function p = f (V )  (Fig. 1). The corresponding solution on the plane ( t ,x)  is shown in Fig. 2. 
Let us note that the points 1/2 and V3 lie in the interval (1/., V*). As V decreases further, the velocity D2 of 
the rear shock wave increases, and the configuration, which involves two shock waves separated by a centered 
compression wave for D2 = DE, is transformed to a single-wave configuration. For larger amplitudes, the 
shock transition which connects the points (V, f (V))  and (1/1, f(V1)) becomes stable again. 

We shall not construct the wave adiabat for V > V1. Note only that for V1 < V. the wave configuration 
generally consists of two centered rarefaction waves separated by a shock rarefaction wave. "Splitting" of 
shock waves and generation of rarefaction shock waves in gases in the neighborhood of the critical point was 
first experimentally discovered in [12]. 

The solution of the problem (2.1) and (3.1) of arbitrary discontinuity decay is found from the 
intersection of the (p,u) diagrams for waves propagating to the right and to the left and passing through 
states 1 and 0, respectively [11]. But the statement of the problem essentially changes when the states of flow 
on each side of the local channel contraction are different. 

4. R e g u l a r  R e g i m e s  of  F low  T h r o u g h  a C h a n n e l  C o n t r a c t i o n .  The states (p+,u +) ahead of 
and behind an obstacle are not arbitrary. The relationships on the discontinuity x = 0 are found from an 
analysis of the possible steady flows in the channel. Let the liquid particles run into an obstacle from the 
interior of the domain x > 0, i.e., u + < 0. Then, if the obstacle generates a wave upstream (x > 0), the flow 
ahead of the obstacle is subsonic (u + + c + > 0). This follows from the stability condition for shock waves and 
the well-known fact that the c + characteristics are the boundaries for simple waves propagating to the left. 
The state (p- ,  u - )  can be found from the following relations for continuous stationary solutions of system 
(2.1) 

1 tt 2 1 )2 pAu=p+Aou + = Q + ,  -~ + i (p )=-~(u  + +i(p + ) = J +  (4.1) 
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in the channel contraction. Here A is the square of the channel's cross section; the function i(p) is determined 
by the condition i'(p) = c2/p. It is well-known for convex equations of state [ /"(V) > 0] that for (p+,u +) 
the only solution of system (4.1) different from A = Ao is the supersonic state (p- ,  u - ) .  In this case the flow 
through the channel's minimum cross-section A = Am must be sonic: 

urn + cm = 0. (4.2) 

Equations (4.1) and (4.2) give us an additional relationship between the flow parameters and the relative 
closure of the channel a = Am/Ao. This relationship allows us to derive the solution of problem (2.1) and 
(3.1) in the domain z > 0 without invoking the initial data (p0, u0) and after that the solution of the Cauchy 
problem with data on the rays (t = 0, z < 0) and (t > 0, z = 0). The solution of the latter problem is 
identical to the classical Riemann problem considered in Section 3. 

Hence, for the class of flows called regular, the steady subsonic flow transforms to supersonic ahead 
of the channel contraction and the downstream disturbance no longer has influence on the domain z > 0. 
Of course, when solving the Cauchy problem for system (2.1) in the domain z < 0, shock waves propagating 
at velocity D > 0 may arise due to the nonlinearity of the equations, and the complete solution of problem 
(2.1) and (3.1) will be inconsistent with the regular solution in the domain z > 0. In this case an obstacle no 
longer has control over the flow upstream, and the problem is reduced to the classical problem on arbitrary 
discontinuity decay (2.1) and (3.1). 

If the density pl is fixed, then the regular flow regime is determined by two parameters: a and M = 
-u~/ea (ul < 0). The region of regular regimes in the plane (M,a )  can be found in the following way. For 
an arbitrary wave propagating to the right and transforming the state (p l ,u l )  to (p+, u+), the admissible 
values (M, c~) are determined by the condition u + < 0 < u + + c + and relationships (4.1) and (4.2), whence 
the dependence ~ = c~(M) can be found. 

These dependences are shown in Fig. 3 by dashed lines. Figure 3a corresponds to the van der Waals 
gas (2.3) with a convex isotherm (T = 1.1). The flows with a centered rarefaction wave moving upstream 
are found to the left of the curve OA. The shock wave propagates in the region OAB ahead of the obstacle. 
The boundary AB of the region of regular flow regimes is found to be the limiting case of zero-velocity flow 
of an outgoing shock wave. Only supersonic regimes of flow past an obstacle that are free from upstream 
disturbances can be found above the curve AB. On the other hand, there exists completely supersonic flow 
through the channel contraction in the region above the curve AC. The flow becomes sonic in the neighborhood 
of the minimum cross-section AC on Am, and only flow with an outgoing shock wave can be found below this 
curve. Since the curve AC lies below the curve AB, as shown in Fig. 3a, the flow configuration in the region 
BAC is not uniquely specified. 

A similar problem of flow nonuniqueness also arises in shallow water equations [2]. Formally the 
equations of one-layer shallow water are included in the class of systems (2.1), but the control conditions 
upstream for flows above an uneven bot tom differ from (4.1) and (4.2). Nevertheless, there is a profound 
analogy between this class of flows and the gas dynamics equations for a channel of variable cross-section. 
The wave structure in one-layer shallow water ahead of an obstacle corresponds to gas flow with a convex 
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equation of state, and anomalous regimes of gas flow with a nonconvex equation of state through a channel 
contraction are similar, as shown below, to the corresponding regimes of two-layer shallow water flow [3]. 

5. A n o m a l o u s  R e g i m e s  of  Gas  F l o w  wi th  a N o n c o n v e x  E q u a t i o n  of  S t a t e .  Let 1 < T < T.. 
In this case equation of state (2.3) has two points of inflection, and shock wave "splitting" takes place in a 
definite interval of values of V as noted above. The existence of a local maximum of shock-wave propagation 
velocity with respect to ampli tude substantially changes the region of regular flow regimes in the (M, a)-plane. 
Just as for convex equations of state, the dependence a = a(M) can be found from relations (4.1) and (4.2) 
for an arbitrary state (p+, u +) connected to (pl, ul) by a combination of a simple wave and a shock wave 
propagating to the right. In this case u + < 0 < u + + c +. Let V1 > V*, as shown in Fig. 1. A fragment of 
the corresponding diagram of flow regimes for (T = 1.01) is presented in Fig. 3b. The region of regular flow 
regimes is bounded on the right by the curve AEFWB. A centered rarefaction wave (V + > V1) arises ahead 
of the obstacle to the left of the curve AP. The flow regime with an outgoing shock wave is represented in 
the region OPAEQ, with the shock wave velocity (V2 < V + < V1) vanishing on the line AE, as in the case of 
a convex equation of state T t> T,. The point E corresponds to state 2 in the (V,p) diagram (see Fig. 1). 

As the amplitude increases further, the disturbance's leading edge moves at the maximum velocity :DE 
and is followed by a simple wave whose trailing edge moves at the velocity A + = u + + c + (the region QER). 
By virtue of ~+ > 0 the admissible Mach numbers of the upstream flow decrease, and the line with M is the 
boundary u + + c + = 0 of the region. The configuration of two shock waves separated by a centered simple 
wave corresponds to the region RFWS. And finally, the shock waves merge on the line WS, and we have a 
single shock wave in the region SWB ahead of the obstacle. 

It should be noted that in searching for the dependence a = a(M),  on the strength of (4.1) and (4.2) we 
assume the existence of a continuous stationary solution of (4.1) connecting the subsonic and supersonic flow 
on each side of a local channel contraction. But, generally speaking, this is not true in the case of nonconvex 
equations of state for contractions such as a Laval nozzle with a unique minimum cross-section. Steady flow 
regimes of dense gases with a nonconvex equation of state through a Laval nozzle have been studied in [8-10]. 
It has been shown that a shockless transition from subsonic to supersonic flow through the range of values 
of V, where f"(V) < 0, is possible only for a nozzle possessing several local cross-section extrema. For a 
contraction with a single minimum, in a stationary solution shock waves can arise in both the expanding and 
the contracting parts of the channel, and with passage through them relations (4.1) are only approximately 
fulfilled. This approximation, also used in [8-10], allows the stationary flow inside the contraction to be found 
on the condition that the flow through the minimum section of the channel is sonic. But the analysis of 
stationary solutions with arbitrary data upstream does not enable us to find the anomalous flow regimes 
discussed below. 

The presence of the lacuna EFWon the boundary of the region of regular flow regimes reflects the fact 
that a change in a relative contraction a in some interval does not affect the wave configuration upstream, 
and in this case the minimum cross-section is no longer controlling. In fact, let MR < M0 < M~: (Fig. 3b). 
For decreasing a and M0 fixed, the point (M0,a)  falls on the boundary FE of the domain of regular flows 
for a = a0. Since u + + c + = 0 therewith, the flow ahead of an obstacle is critical. The dependence ~ = a(p) 
derived from (4.1) is shown in Fig. 4. 

As a decreases further, the wave configuration ahead of an obstacle does not change, since the boundary 
of the centered compression wave reaches the obstacle. Thus, p+ is no longer dependent on a, and possible 
configurations of the flow through the contraction can be found according to Fig. 4 (for a < a0). The regular 
continuous steady flow connects the state a = o0 to the state (p+, u +) for (p- ,  u - )  and corresponds to curve 
2 (subsonic flow) in the contracting part of the channel and to curve 1 (supersonic flow) in its expanding part. 
When a < a0, such a flow is impossible, and the supersonic flow corresponding to curve 3 originates in the 
contracting part. Theoretically, the flow down this branch can return to the initial state (p- ,  u - )  = (p+, u +) 
downstream and become symmetric and totally supercritical. But another type of flow is found to be more 
stable. In the expanding part of the channel, this type contains a shock transition from the supersonic flow 
on branch 3 to the sonic flow to the minimum point on curve 1. in the considered approximation ( J+  - const 
on discontinuity lines), the resulting configuration is shown by arrows in Fig. 4. This solution is represented 
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for a0 > a > a l .  When a =Otl,  the point (M0,a) falls on the boundary F W o f  the regular flow region again. 
The value of a l  corresponds to the minimum of curves 3 and 4 in Fig. 4. When a = a l ,  a shock wave 

transforming (p+, u +) to (p+, u +) forms ahead of an obstacle, and the regular subsonic regime of the flow 
along curve 4 is realized in the contracting part of the channel. A supersonic flow along branch 3 can arise 
in the expanded part of the channel, but, as in the previous case, the shock transition to sonic and then to 
supersonic flow along curve 1 for a = a0 (shown by the arrows directed to the left) is found to be more stable. 

With intersection of the line FW, the peculiarities of the change in the flow regime as the minimum 
cross-section of the channel decreases can be illustrated by numerical solution of the nonstationary problem 
of the sudden contraction of a channel. 

Figure 5 presents the distribution of the density p in the neighborhood of the channel contraction for 
a van der Waals gas with equation of state (2.1) for T = 1.01, p0 = 0.3. For a = Am/Ao [Am = min A(x)] 
the channel's profile is given by the function y = 1 - A(z)/Ao, which bounds the shaded region. The Mach 
number of the upstream flow M0 equals 1.15 in either case. When a = 0.8 (Fig. 5b), the point (M0, a) is in 
the region EFW, and supersonic flow through the channel contraction is realized. The flow is symmetric in the 
neighborhood of the minimum contraction, and a shock wave transforming the supersonic flow to sonic arises 
downstream. We did not use the shock wave approximation of (4.1) in the calculations. So the configuration 
shown in Fig. 4 qualitatively reproduces the wave picture which appears in the basic model as well. When 
a = 0.79 (Fig. 5b) the flow through the contracting part of the channel is regular, and the transition from 
subsonic to supersonic flow takes place in the minimum cross-section of the channel. In both cases a shock 
wave followed by a compression wave propagates ahead of an obstacle at the velocity :D E. 

Thus, with intersection of the boundaries of the region of regular flow, a sharp change in the wave 
configuration takes place in the neighborhood of the channel contraction, which may be responsible for 
hysteresis, i.e., dependence of the solution on the prehistory of the process. Naturally, for both nonconvex and 
convex equations of state, a region of nonuniqueness of the flow regimes appears in the plane (M, ~) for M > 1, 
in which flow with an outgoing shock wave as well as supercritical flow with undisturbed flow upstream can 
be realized. The latter flow regime may take place above the curve AC (Fig. 3b). 

6. C o n c l u s i o n s .  (1) The structure of nonsteady waves propagating upstream from a local channel 
contraction has been studied. If the minimum cross-section of the channel has total control over the upstream 
flow, the flow behind an obstacle is supersonic, and the wave configuration downstream can be found as 
a solution of the Cauchy problem. For gases with a nonconvex equation of state, steady flows through the 
channel of variable section can contain several shock waves, as shown in [8-10] and in Figs. 4 and 5. The 
advantage of the nonsteady approach to the problem of wave structure in the neighborhood of a local channel 
contraction over the investigations of steady flows performed in [8, 9] is not only the fact that anomalous flow 
regimes are found in the region EFW (Fig. 3b), but also that the analysis of possible wave configurations in 
the contraction is simplified when we succeed in separating the shock waves generated by the obstacle itself 
and those generated by the downstream conditions. 

(2) A particular class of isothermal motions of a van der Waals gas in the neighborhood of a critical 
point has been investigated, but the approach used is also applicable to arbitrary barotropic motions of the gas. 
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In addition, since contact discontinuities cannot propagate upstream of an obstacle in the case of nonsteady 
and nonisothermal flows of a Van der Waals gas, the wave structure in the neighborhood of the critical point 
for arbitrary gases is similar to that in the isothermal case discussed above. 

(3) The existing analogy between the well-known flow regimes for a gas-liquid medium and two-layer 
shallow water [3] gives us the ability to state that the existence of anomalous flow regimes in the neighborhood 
of a channel contraction is a common property of models of two-phase flows without a monotone dependence 
of the propagation velocity of nonlinear disturbances on the wave amplitude. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-01210-a). 
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